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Abstract
In this paper we develop an integrating factor matrix method to derive conditions
for the existence of first integrals. We use this novel method to obtain first
integrals, along with the conditions for their existence, for two- and three-
dimensional Lotka–Volterra systems with constant terms. The results are
compared to previous results obtained by other methods.

PACS numbers: 02.30.Hq, 02.30.Ik, 87.10.Ed

1. Introduction

Consider a general dynamical system in n dimensions as follows:

ẋ = f (x, μ), x ∈ R
n with n > 1, (1)

where μ ∈ R
p is a vector of parameters. Our main objective is to find conditions on the

parameters such that the system above possesses a first integral. In this paper, we concentrate
on finding integrals of Lotka–Volterra (LV) systems with constant terms.

The LV system has been the subject of intensive studies during the past century. The
interaction of two species in an ecosystem [1], a metamorphosis of turbulence in plasma
physics [2], hydrodynamic equations [3], autocatalytic chemical reactions [4] and many more
are of LV type. Nevertheless, the dynamics of such systems is far from being understood.
Finding first integrals of LV systems, or any dynamical system, gives global information about
the long-term behaviour of such systems.

In two-dimensional systems, the existence of a first integral implies that the system is
completely integrable because the phase portraits are completely characterized. For three-
dimensional systems, the existence of a first integral means that there cannot be chaotic
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motion as the solutions will live inside the level sets of such an integral function. Here we
include constant terms to generalize LV systems. The constant term can be considered as
a constant rate harvesting. Dynamics and bifurcation analysis of such a system have been
studied in [5].

Many different methods have been developed to study the existence of first integrals of
LV systems. Perhaps one of the earliest attempts to study the existence of first integrals was
published by Cairó et al [6], who studied the integrability of n-dimensional LV equations using
the Carleman embedding method. They sought an invariant that may be time dependent. Cairó
and Llibre [7] used a polynomial inverse integrating factor to find a condition for the existence
of the first integral. The Darboux method that uses the relationship between algebraic curves
and integrability of differential equations has been introduced by Cairó and Llibre [8] to study
two-dimensional LV systems. Cairó et al [9] used the same method to search for a first integral
of two-dimensional quadratic systems.

The Darboux method has also been used to derive an integral for three-dimensional
LV systems [10] and for the so-called ABC systems, which corresponds to particular cases
of three-dimensional LV. The ABC systems were among the first three-dimensional models
that were investigated. Grammaticos et al [11] derived first integrals using the Frobenius
integrabilty theorem method (first introduced by Strelcyn and Wojciechowski [12]). Ollagnier
[13] has found polynomial first integrals of the ABC system. Gao and Liu [14] presented a
method that basically relies on changing variables to transform three-dimensional LV systems
to two-dimensional ones. The existence of first integrals follows from integrating the two-
dimensional systems. Gao [15] used a direct integration method to find first integrals of
three-dimensional LV systems. A new algorithm presented by Gonzalez-Gascon and Peralta
Salas [16] also used three-dimensional LV systems as a test case.

The approach closest to the work presented here uses the idea of associating a Hamiltonian
with a first integral of a vector field. It was introduced by Nutku [17]. A generalization of
this idea to two-dimensional vector fields having a first integral was provided by Cairó and
Feix [18]. They showed that, through time rescaling, the first integral can be considered as
a Hamiltonian. Subsequently, Cairo et al [19] and Hua et al [20] used an Ansatz for their
Hamiltonian functions. They assumed that a first integral (or an invariant) H is a product of
functions, H = P(x, y)(Q(x, y))μ(R(x, y))ν , where P,Q and R are first-degree polynomials,
and derived conditions for two-dimensional quadratic systems to have a first integral.

Another Hamiltonian method that has been used works as follows. A general system (1) is
said to have a Hamiltonian structure if and only if it can be written as ẋ = f (x) = S(x)∇H(x),
where S is a skew-symmetric matrix and H is a smooth function. The matrix function S must
satisfy the Jacobi identity [21]. Plank [22] has used this property to find a Hamiltonian
function for two-dimensional LV systems, while Gao [21], using the same property, has
derived conditions for three-dimensional systems not to be chaotic.

In this paper, we will not impose the Jacobi identity on the matrix S since we only want
H to be a first integral. Thus, it is sufficient to ensure that f (x) can be written as S(x)∇H(x).
Consider the following proposition.

Proposition 1.1 (McLachlan et al 1999 [23]). Let f ∈ Cr(Rn, R
n), r � 1, n > 1, be a

vector field and H ∈ C(Rn, R) be a first integral of the vector field f (i.e. f · ∇H = 0) for
all x. Then there is a skew-symmetric matrix function S(x) on the domain {x : ∇H �= 0} such
that f = S∇H .

As a consequence, there is also a skew-symmetric matrix function T (x) on the domain
{x : f �= 0} such that ∇H = Tf . We are going to use this idea to find first integrals and
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the associated constraints on the parameters for two- and three-dimensional LV systems with
constant terms. We call the matrix T an integrating factor matrix if and only if

curl(Tf ) = 0. (2)

Making an Ansatz concerning the integrating factor matrix T, we obtain both an integral
and the conditions on the parameters for its existence. The meaning of curl depends on the
dimension of the system. For two-dimensional systems, curl(Tf ) is the scalar

∂(Tf )1

∂x2
− ∂(Tf )2

∂x1
= 0,

where (T F )i is the ith component of the vector Tf . In three-dimensional systems,
curl(Tf ) = ∇ × Tf as usual.

In sections 2 and 3 we will discuss the results of applying the integrating factor matrix
approach to two- and three-dimensional LV systems with constant terms, respectively. In
either case, we will impose some conditions on the integrating factor matrix. We will assume
that its entries can be written as a product of functions of a single variable. In the three-
dimensional case, we use two different forms of the matrix. These assumptions are restrictive,
and we do not claim to present the most general class of first integrals which can be found
with the proposed method. However, the most general form of the integrating factor matrix
will lead to conditions in the form of coupled, nonlinear partial differential equations. The
analysis of these equations is the work in progress. We emphasize that with the simplifying
conditions used in this paper, we reproduce many known first integrals and uncover several
new ones both in two and three dimensions. Each section is concluded with a comparison to
earlier results from the literature.

2. Two-dimensional LV systems with constant terms

In this section, we consider integrals of the two-dimensional LV system with constant terms

ẋ1 = f1(x1, x2) = x1(b1 + a11x1 + a12x2) + e1,

ẋ2 = f2(x1, x2) = x2(b2 + a21x1 + a22x2) + e2,
(3)

where bi, aij (i, j = 1, 2) are the arbitrary parameters and e1, e2 are the constant terms. We
choose an integrating factor matrix as follows:

T (x1, x2) =
(

0 −R

R 0

)
, (4)

where the function R = R(x1, x2) is to be determined later on. The matrix T (x1, x2) is an
integrating factor if and only if the curl of T f is zero, where f = (f1, f2). As mentioned
before, in the two-dimensional case, this condition is equivalent to the following:

∂(Rf1)

∂x1
+

∂(Rf2)

∂x2
= 0. (5)

The associated first integral H is given by

H(x1, x2) =
∫

R(x1, x2)f1(x1, x2) dx2 + h(x1), (6)

where h(x1) is found by imposing ∂H/∂x1 = −Rf2.
Let us assume that R is separable, i.e. R(x1, x2) = A(x1)B(x2). We have the following

lemma.
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Lemma 2.1. Let f 1 and f 2 be the functions given in the vector field (3); then condition (5)
determines the forms of A(x1) and B(x2) to be

A(x1) = exp

(
αx1

a12

)
x1

β/a12 , B(x2) = exp

(−αx2

a21

)
x2

γ /a21 , (7)

where α, β and γ are constants to be determined later on.

Proof. We substitute R into (5) to obtain

1

A

dA

dx1
a12x1x2 +

1

B

dB

dx2
a21x1x2 + F(x1) + G(x2) = 0, (8)

where

F(x1) = A1

A
(b1x1 + a11x1

2 + e1) + b1 + 2a11x1 + a21x1,

G(x2) = B2

B
(b2x2 + a22x2

2 + e2) + b2 + 2a22x2 + a12x2.

(9)

Applying ∂2/(∂x1∂x2) to both sides of equation (8), we obtain a separable differential equation
in terms of A(x1) and B(x2), which can be solved explicitly. �

We then substitute A(x1) and B(x2) into equation (8) to obtain

γ x1 + F(x1) + βx2 + G(x2) = 0, (10)

or

γ x1 + F(x1) = ζ, βx2 + G(x2) = −ζ, (11)

where ζ is a constant. Finally, we obtain the following set of equations:(
αe1

a12
+

βb1

a12
+ b1

)
+

(
γ +

αb1

a12
+

βa11

a12
+ 2a11 + a21

)
x1 +

αa11

a12
x1

2 +
βe1

a12x1
= ζ, (12)

and(
−αe2

a21
+

γ b2

a21
+ b2

)
+

(
β − αb2

a21
+

γ a22

a21
+ 2a22 + a12

)
x2 − αa22

a21
x2

2 +
γ e2

a21x2
= −ζ, (13)

respectively.
The above expression is satisfied if and only if the parameters satisfy the following

conditions:

0 = αa11

a12
= αa22

a21
, (14)

0 = βe1

a12
= γ e2

a21
, (15)

0 = γ +
αb1

a12
+

βa11

a12
+ 2a11 + a21, (16)

0 = β − αb2

a21
+

γ a22

a21
+ 2a22 + a12, (17)

αe1

a12
+

βb1

a12
+ b1 = αe2

a21
− γ b2

a21
− b2. (18)

Let us introduce l1 := β/a12 + 1 and l2 := γ /a21 + 1. When α = 0, the system (15)–(18) is
equivalent to the following system of equations:
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e1l1 = e1, (19)

e2l2 = e2, (20)

l1a11 + l2a21 = −a11, (21)
l1a12 + l2a22 = −a22, (22)

b1l1 + b2l2 = 0, (23)

which is more comfortable to work on and closely related to Plank [22]. As a consequence,
in the case of α = 0, our problem can be divided into three different subcases, depending
on the value of the constant terms. In the following we give the corresponding conditions
along with the resulting integrals for the cases e1, e2 �= 0, e1 �= 0, e2 = 0 and e1 = e2 = 0,

separately. The case e1 = 0, e2 �= 0 follows by symmetry considerations. We note that the
case corresponding to the original LV system, where e1 = e2 = 0, has been discussed by
various people. However we have included a discussion of this case including some previously
unknown special solutions. The case where α �= 0 is discussed in subsection 2.4.

To start with, let us consider (19)–(23) as an overdetermined linear system:

Al = r, (24)

where l = (l1, l2) and the matrix A and the vector r are to be determined later. The system
has a solution only if the vector r is orthogonal to the left null space of the matrix A.

2.1. The case e1, e2 �= 0

We have the case where both the constant terms e1 and e2 are non-zero. Then by (19) and (20),
this implies that l1 = l2 = 1. Moreover, we can simplify the other conditions to

b1 + b2 = 0, 2a11 + a21 = 0 and a12 + 2a22 = 0. (25)

If the LV system (3) with non-zero constant terms e and f satisfies conditions (25), then it has
a first integral that is given by

H = b1x1x2 + a11x
2

1 x2 − a22x1x
2

2 + e1x2 − e2x1. (26)

2.2. The case e1 �= 0, e2 = 0

One of the constant terms, e1, is not zero. This means that the free parameter l1 must be one
by (19). We now have a linear system like (24) with a 3 × 1 matrix A and a vector r in R

3

with only one unknown l2. Without loss of generality, we assume that the matrix A is of rank
1; when A has rank zero we have a trivial integral H = x2 since ẋ2 = 0. Using the fact that
this system must be solvable, we can again find the conditions for the existence of the first
integral. As we assume that a21 �= 0, the solvability conditions are given by

2a11a22

a21
− a22 − a12 = 0 and 2b2a11 − b1a21 = 0, (27)

and we have l2 = −2a11/a21. If l2 is not zero, then the first integral is given by

H = x
l2

2

(
−b2x1 − a21

2
x 2

1 − a22x1x2 +
e1

l2

)
. (28)

However, in the case where the exponent l2 is zero, the integral is given by

H = −b2x1 − a21

2
x 2

1 − a22x1x2 + e1 ln|x2|. (29)

Note that expression (28) is also obtained as a limit of result (26) but the conditions stated in
the case e1 �= 0 and e2 = 0 are more general than those obtained in the limit.
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2.3. The case e1 = 0 and e2 = 0

Finally, if e1 = e2 = 0, equations (19) and (20) are trivial and we have a linear system of the
form (24) with a 3 × 2 matrix A and a vector e in R

3 from (21) to (23).
If A is of maximal rank, then the solvability condition of the linear system (24) is given

by

b1a22(a21 − a11) + b2a11(a12 − a22) = 0. (30)

If our system satisfies this condition, then

l1 = a22(a21 − a11)

a11a22 − a12a21
and l2 = a11(a12 − a22)

a11a22 − a12a21
. (31)

When neither l1 nor l2 are zero, the first integral is given by

H = x
l1

1 x
l2

2

(
b1

l2
+

a11

l2
x1 − a22

l1
x2

)
. (32)

However, either l1 or l2 may be zero and if l1 = 0, l2 �= 0 and l2 �= −1, then we have
b2 = a22 = 0, a11 �= a21 and an integral that is given by

H = x
l2

2

(
b1

l2
+

a11

l2
x1 +

a12

(l2 + 1)
x2

)
. (33)

But when l1 = 0 and l2 = −1, this implies b2 = 0 and a21 = a11. It follows that the integral
is given by

H = a12 ln|x2| − a22 ln|x1| − b1

x2
− a11

x1

x2
. (34)

Finally, when both l1 and l2 are zero, which implies a11 = a22 = 0, the first integral is given
by

H = b1 ln|x2| + a12x2 − b2 ln|x1| − a21x1. (35)

We remark that the case when l2 = 0, l1 �= 0, l1 �= −1 and the case when l2 = 0, l1 = −1
follow by symmetry considerations.

Now let us assume that A has rank 1. Excluding the trivial case in which one column
vector is zero, we assume that

(a11, a12, b1)
T = λ(a21, a22, b2)

T , (36)

for some λ �= 0. This leads to the following integral:

H = x1x
−λ
2 , where λ = a11/a21. (37)

2.4. The case where α �= 0

This implies a11 = a22 = 0, due to conditions (14). Consider conditions (16) and (17).
Eliminating α in both equations gives

(β + a12)b1a21 + (γ + a21)b2a12 = 0. (38)

Consider now condition (18). After some algebraic manipulation we get

(β + a12)b1a21 + (γ + a21)b2a12 = α(e2a12 − e1a21), (39)

and due to the fact that α �= 0, we have

e2a12 − e1a21 = 0. (40)
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Finally conditions (15) gives the following three sub-cases:

(a) γ = β = 0, (b) γ �= 0, β = 0, and (c) γ, β �= 0 (41)

The case where β �= 0 and γ = 0 follows by symmetry. Note that the conditions in subcases
(b) and (c) imply that e1 = e2 = 0. These subcases are already discussed and the integrals are
equivalent to the integral in equation (35). The only case remaining is when γ = β = 0 that
gives b1 + b2 = 0, provided a12a21 �= 0. We then obtain the following first integral:

H = e(a21x1−a12x2)/b2(e1 + a12x1x2),

or, equivalently,

H = a21x1 − a12x2 + b2 ln(e1 + a12x1x2). (42)

2.5. Further notes regarding the known integrals of two-dimensional LV systems and
quadratic systems

Many attempts have been made to study the integrability of two-dimensional LV systems and
general quadratic systems. Different first integrals were found using different methods; some
are similar to those found in this discussion.

The first integral (26) along with its conditions (25) was probably first found by Frommer
in 1934 (see Artés and Llibre [24]). It was also derived by Cairó et al, who used the Hamiltonian
method and by Hua et al, who studied the connection between the existence of a first integral
and the Painlevé property in a general quadratic system. In the latter work, the form of the
first integral and the vector field are different, but through some invertible transformations it
is not hard to check that the result is actually equivalent.

Many first integrals were known for the case e1 = 0 and e2 = 0. For instance, (32)–(35)
were derived by Nutku [17], Plank [22] and Cairó et al [7, 9, 25] using various methods.
We remark that the first integral (35) that has constraints a11 = a22 = 0 was first derived by
Volterra himself as a constant of motion (see the book by Hofbauer and Sigmund [1]). To the
best of our knowledge, the other first integrals presented here are new.

3. Three-dimensional LV systems with constant terms

We consider the following three-dimensional LV systems with constant terms:

ẋ1 = f1(x1, x2, x3) = x1(b1 + a11x1 + a12x2 + a13x3) + e1,

ẋ2 = f2(x1, x2, x3) = x2(b2 + a21x1 + a22x2 + a23x3) + e2,

ẋ3 = f3(x1, x2, x3) = x3(b3 + a31x1 + a32x2 + a33x3) + e3,

(43)

where bi, aij (i, j = 1, 2, 3) are the arbitrary parameters and ei (i = 1, 2, 3) are the constant
terms. In this section, in order to find integrals of the system above we shall make the following
two Ansätze for the skew-symmetric matrix T:

T1(x1, x2, x3) = R

⎛
⎝ 0 −α′ −β ′

α′ 0 −γ ′

β ′ γ ′ 0

⎞
⎠ , (44)

and

T2(x1, x2, x3) = R

⎛
⎝ 0 −αx3 −βx2

αx3 0 −γ x1

βx2 γ x1 0

⎞
⎠ , (45)
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respectively, where α, α′, β, β ′, γ, γ ′ ∈ R are the arbitrary parameters. We also use an ansatz
for the function R, namely R = R(x1, x2, x3) = x

l1−1
1 x

l2−1
2 x

l3−1
3 , where the li (i = 1, 2, 3)

are free parameters that are to be determined later on. As discussed in the introduction, this
Ansatz is restrictive. However, a more general treatise falls outside the scope of the present
paper.

The matrices Ti(x1, x2, x3) (i = 1, 2) are integrating factors if and only if curl(Ti f ) = 0 ,
where f = (f1, f2, f3)

T . In the three-dimensional case, this condition is equivalent to∣∣∣∣∣∣
i j k

∂/∂x1 ∂/∂x2 ∂/∂x3

∂Hi/∂x1 ∂Hi/∂x2 ∂Hi/∂x3

∣∣∣∣∣∣ = 0, (46)

where

∇Hi = Tif (i = 1, 2). (47)

In order to find the first integral H1, we expand the above expression with respect to the matrix
T1 as follows:

∂H1

∂x1
= −Rα′f2 − Rβ ′f3, (48)

∂H1

∂x2
= Rα′f1 − Rγ ′f3, (49)

∂H1

∂x3
= Rβ ′f1 + Rγ ′f2, (50)

and the associated first integral H1(x1, x2, x3) is given by

H1(x1, x2, x3) =
∫

(Rβ ′f1 + Rγ ′f2) dx3 + h(x1, x2), (51)

where h(x1, x2) is found by imposing (48) and (49). The computation of H2 is completely
analogous.

In the following, we shall derive integrals for the cases e1, e2, e3 �= 0; e1, e2 �= 0, e3 = 0;
e1 �= 0, e2 = e3 = 0 and e1 = e2 = e3 = 0.

3.1. The case e1, e2, e3 �= 0

A bit of algebra shows that if e1, e2, e3 �= 0, the integrating factor matrix T2 does not yield
any solutions, so, in this case, we will only use T1. We substitute expressions (48)–(50) into
condition (46) and obtain

⎛
⎜⎜⎜⎜⎜⎜⎝

∂

∂x2
(Rβ ′f1 + Rγ ′f2) − ∂

∂x3
(Rα′f1 − Rγ ′f3)

∂

∂x3
(−Rα′f2 − Rβ ′f3) − ∂

∂x1
(Rβ ′f1 + Rγ ′f2)

∂

∂x1
(Rα′f1 − Rγ ′f3) − ∂

∂x2
(−Rα′f2 − Rβ ′f3)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0. (52)

Finally, we substitute the vector field (43) and the function R into the above vector. For the
first component we find

8
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β ′x1

x2

[
(l2 − 1)b1 + (l2 − 1)a11x1 + l2a12x2 + (l2 − 1)a13x3 + (l2 − 1)

e1

x1

]

+ γ ′
[
l2b2 + l2a21x1 + (l2 + 1)a22x2 + l2a23x3 + (l2 − 1)

e2

x2

]

− α′x1

x3

[
(l3 − 1)b1 + (l3 − 1)a11x1 + (l3 − 1)a12x2 + l3a13x3 + (l3 − 1)

e1

x1

]

+ γ ′
[
l3b3 + l3a31x1 + l3a32x2 + (l3 + 1)a33x3 + (l3 − 1)

e3

x3

]
= 0 (53)

and the other two components yield similar equations. We now find conditions on the
parameters (α′, β ′, γ ′, li , aij , bi, ei) such that a solution exists. The results for this case are
summarized in the following lemma.

Lemma 3.1. The vector field (43) with e1, e2, e3 �= 0 has a first integral in the following
cases:

(i) if the conditions b1 + b2 = 0, 2a11 + a21 = 0, 2a22 + a12 = 0 and a13 = a23 = 0 are
satisfied, then the integral is given by

H = b1x1x2 + a11x
2
1x2 − a22x1x

2
2 + e1x2 − e2x1, (54)

(ii) if the conditions b1 + b2 = 0, b1 + b3 = 0, 2a11 + a21 = 0, 2a11 + a31 = 0, 2a22 + a12 = 0,
2a33 + a13 = 0 and a12a13 + a12a23 + a13a32 = 0 are satisfied, then the integral is given by

H = −2b1a33x1x3 − 2b1a22x1x2 − 2a11a33x
2
1x3 + 2a11a22x

2
1x2

+ 2a2
33x1x

2
3 + 2a2

22x1x
2
2 + 4a22a33x1x2x3

+ 2(e3a33 + e2a22)x1 − 2e1a33x3 + 2e1a22x2, (55)

(iii) if the conditions bi = 0 and aij = −2ajj for i �= j and i, j = 1, 2, 3 are satisfied, then
the integral is given by

H = a2
11a22x

2
1x2 − a2

11a33x
2
1x3 − a11a

2
22x1x

2
2 + a11a

2
33x1x

2
3 + a2

22a33x
2
2x3

− a22a
2
33x2x

2
3 + (−a11a22e2 + a11a33e3)x1 + (a11a22e1 − a22a33e3)x2

+ (a22a33e2 − a11a33e1)x3. (56)

All other first integrals that can be found using Ansatz (44) are related to these three cases
through a permutation of the coordinates xi and coefficients {aij , bi, ei}.
Proof. First considering the terms proportional to x2

i

/
xj for i �= j we find that

l1 = l2 = l3 = 1. Consequently, we get the following conditions on the parameters:

α′(b1 + b2) = 0, (57)

β ′(b1 + b3) = 0, (58)

γ ′(b2 + b3) = 0, (59)

α′(2a11 + a21) = 0, (60)

α′(2a22 + a12) = 0, (61)

β ′(2a11 + a31) = 0, (62)

β ′(2a33 + a13) = 0, (63)

γ ′(2a22 + a32) = 0, (64)

9
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γ ′(2a33 + a23) = 0, (65)

−α′a13 + β ′a12 + γ ′(a21 + a31) = 0, (66)

α′a23 + β ′(a12 + a32) + γ ′a21 = 0, (67)

α′(a13 + a23) + β ′a32 − γ ′a31 = 0. (68)

(i) We start with the case where α′ �= 0, β ′ = γ ′ = 0. From (57)–(68), the following
conditions immediately apply:

b1 + b2 = 0, 2a11 + a21 = 0, (69)

2a22 + a12 = 0, a13 = a23 = 0, (70)

and using (51) we obtain the first integral (54).
(ii) We turn to the case where α′, β ′ �= 0, γ ′ = 0. From (57)–(65), the following conditions

immediately apply:

b1 + b2 = 0, 2a11 + a21 = 0, 2a11 + a31 = 0, (71)

b1 + b3 = 0, 2a22 + a12 = 0, 2a33 + a13 = 0. (72)

On the other hand, α′ and β ′ can be computed from the following linear homogeneous
equations due to (66)–(68):

α′a13 − β ′a12 = 0, (73)

α′a23 + β ′(a12 + a32) = 0, (74)

α′(a13 + a23) + β ′a32 = 0. (75)

The solvability condition of the linear system above is given by

a12a13 + a12a23 + a13a32 = 0. (76)

If the above condition is satisfied, we obtain the first integral (55) due to (51).
(iii) Finally we consider the case α′, β ′, γ ′ �= 0. From equations (57)–(65), we have

b1 + b2 = 0, 2a11 + a21 = 0, 2a22 + a12 = 0, (77)

b1 + b3 = 0, 2a11 + a31 = 0, 2a33 + a13 = 0, (78)

b2 + b3 = 0, 2a22 + a32 = 0, 2a33 + a23 = 0. (79)

We simplify the above equations to

bi = 0 and aij = −2ajj , i �= j (i, j = 1, 2, 3). (80)

The parameters α′, β ′ and γ ′ can be computed from equations (66)–(68) providing us the
following homogenous linear system:⎛

⎝ −a13 a12 (a21 + a31)

a23 (a12 + a32) a21

(a13 + a23) a32 −a31

⎞
⎠

⎛
⎝α

β

γ

⎞
⎠ = 0. (81)

Substituting (80) into the above linear system, we have the following solutions:

α = a11a22μ, β = −a11a33μ, γ = a22a33μ. (82)

Then if all the parameters of the LV systems (43) satisfy the above conditions, the system
(43) admits the first integral (56).

10
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We have ordered the solutions according to α′ �= 0, α′, β ′ �= 0 and α′, β ′, γ ′ �= 0.
A straightforward computation shows that any other combination yields one of the first
integrals (54)–(56) with the permuted coordinates and coefficients. For instance, if we take
α′ = γ ′ = 0 and β ′ �= 0, we find the first integral (54) with the indices permuted according to
{1, 2, 3} → {1, 3, 2}. �

We remark that the first integral given in lemma 3.1, point (i), is the same integral that is
given in the two-dimensional case. This can be guessed as the first two equations of (43) are
independent of x3.

In the next three subsections, we now turn to the case where there is at least one constant
term equal to zero. As it turns out, the first integrals found with Ansatz (44) can all be obtained
as limits of the results given in lemma 3.1. New first integrals can be found using Ansatz (45).
Condition (46) leads to

B1l1 + B2l2 = 0, (83)

B3l1 + B2l3 = 0, (84)

B3l2 − B1l3 = 0, (85)

A13l1 + A23l2 = 0, (86)

A32l1 + A22l3 = 0, (87)

A31l2 − A11l3 = 0, (88)

A11l1 + A21l2 = −A11, (89)

A12l1 + A22l2 = −A22, (90)

A31l1 + A21l3 = −A31, (91)

A33l1 + A23l3 = −A23, (92)

A32l2 − A12l3 = −A32, (93)

A33l2 − A13l3 = A13, (94)

γ e2(l2 − 1)/x2 = γ e3(l3 − 1)/x3 = (βl2 − αl3)e1/x1 = 0, (95)

βe1(l1 − 1)/x1 = βe3(l3 − 1)/x3 = (αl3 + γ l1)e2/x2 = 0, (96)

αe1(l1 − 1)/x1 = αe2(l2 − 1)/x2 = (βl2 − γ l1)e3/x3 = 0. (97)

Here, we have introduced

B1 = b1α − b3γ A1i = a1iα − a3iγ

B2 = b2α + b3β A2i = a2iα + a3iβ

B3 = b1β + b2γ A3i = a1iβ + a2iγ .

(98)

Note that

B1β + B2γ − B3α = 0 A1iβ + A2iγ − A3iα = 0 ∀ i.

11
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3.2. The case e1, e2 �= 0, e3 = 0

Given that e1, e2 �= 0, e3 = 0, we conclude that l1 = l2 = 1 due to conditions (95)–(97), and
l3 must satisfy the following equations:

β − αl3 = αl3 + γ = 0. (99)

The results are described in the following lemma. We omit the proof, which is straightforward
and analogous to that of lemma 3.1.

Lemma 3.2. The vector field (43) with e1, e2 �= 0, e3 = 0 has the following first integrals:

(i) H = b1x1x2 + a11x
2
1x2 − a22x1x

2
2 + e1x2 − e2x1, under the conditions

b1 + b2 = 2a11 + a21 = 2a22 + a12 = 0 and a13 = a23 = 0;
(ii) H = (a13 − a23)x1x2x

2
3

/
2 + e1x2x3 − e2x1x3, under the conditions

a13 − a23 �= 0, b1 + b3 = b2 + b3 = 0, a21 + a31 = a11 − a21 = 0,
a22 + a32 = a12 − a32 = 0 and a13 + a23 + 2a33 = 0;

(iii) H = (e1x2 − e2x1)x
l3
3 , where l3 is a solution of

b1 − b3l3 = a11 + a31l3 = a12 + a32l3 = a13 + a33l3 = 0,

under the conditions b2
3 + a2

31 + a2
32 + a2

33 �= 0, b1 − b2 = 0, a1i − a2i = 0 and
b3a1i − b1a3i = 0 for i = 1, 2, 3.

These are all first integrals that can be found using Ansatz (45).

We also remark that the first integral given in lemma 3.2, point (i), is trivial as it follows
directly from the two-dimensional case.

3.3. The case e1 �= 0, e2 = e3 = 0

In this case, it immediately follows that l1 = 1 due to conditions (96) and (97), and we also
have the following equation to satisfy condition (95):

βl2 − αl3 = 0. (100)

All results for this case are given in the following lemma.

Lemma 3.3. The vector field (43) with e1 �= 0, e2 = e3 = 0 has the following first integrals:

(1) H = −B2x1 −A21x
2
1

/
2 +αe1 ln|x2|+βe1 ln|x3|, where α, β are the solutions of A22 = 0,

A23 = 0, under the conditions
b1 = a11 = a12 = a13 = 0 and a22a33 − a23a32 = 0;

(2) H = −a23x1x3 + e1 ln|x2|, under the conditions
b2 = a21 = a22 = 0, a23 �= 0 and b1 + b3 = a1i + a3i = 0 for i = 1, 2, 3;

(3) H = β ln|x3| + α ln|x2|, where α, β are the solutions of B2 = 0 and A2i = 0,
for i = 1, 2, 3 under the condition (b2, a21, a22, a23)

T = λ(b3, a31, a32, a33)
T for some

λ ∈ R;
(4) H = A33x1x3 + βe1 ln|x3| − γ e1 ln|x2|, where β, γ are the solutions of B3 = 0, A31 = 0,

A32 = 0, under the conditions
A33 �= 0, b1 + b3 = a1i + a3i = 0 for i = 1, 2, 3 and (b1, a11, a12)

T = λ(b2, a21, a22) for
some λ ∈ R;

(5) H = (a13 + a23)x3 − (a12 + a32)x2 + e1 ln|x3| − e1 ln|x2|, under the conditions
a12 + a32 �= 0, a13 + a23 �= 0, b1 + b2 = b1 + b3 = 0, a11 + a21 = a11 + a31 = 0 and
a12 + a22 = a13 + a33 = 0;

12
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(6) H = −a23x1x
l2
2 x3 + e1x

l2
2

/
l2, where l2 = −(a13 + a33)/a23, under the conditions

a23 �= 0, a13 + a33 �= 0, b1 = a21 = a22 = 0 and b1 + b3 = a11 + a31 = a12 + a32 = 0;
(7) H = (b1 + a11x1)x1x

l2
2 x

l3
3 + e1x

l2
2 x

l3
3 , where l2, l3 are the solutions of b2l2 + b3l3 = −b1,

a21l2 + a31l3 = −2a11, a22l2 + a32l3 = a23l2 + a33l3 = 0, under the conditions
a12 = a13 = 0, a22(−b1a31 + 2b3a11) + a32(−2b2a11 + b1a21) = 0 and a23(−b1a31 +
2b3a11) + a33(−2b2a11 + b1a21) = 0;

(8) H = (a13 + a33)x1x
l2
2 x

l3+1
3 + e1x

l2
2 x

l3
3 , where l2, l3 are given below

l2 = γ (a13 + a33)

A23
, l3 = −β(a13 + a33)

A23
,

and β, γ are the solutions of equations B3 = 0, A31 = 0, A32 = 0 under the conditions
A33 �= 0, A23 �= 0, a13 + a33 �= 0, b1 + b3 = a11 + a31 = a12 + a32 = 0 and
(b1, a11, a12)

T = λ(b2, a21, a22)
T for some λ ∈ R;

(9) H = ((a12 + a22)x2/l3 + (a13 + a23)x3/(l3 + 1))x1x
l2
2 x

l3
3 + e1x

l2
2 x

l3
3

/
l3, where l2 =

−(a12 + a22)/(a22 − a32) and l3 = −l2, under the conditions
a12 + a22 �= 0, a22 − a32 �= 0, a13 + a33 �= 0, a23 − a33 �= 0, b1 + b3 = b2 − b3 = 0,
a11 + a31 = a21 − a31 = 0 and (a13 + a33)(a22 − a32) − (a12 + a22)(a23 − a33) = 0.

We note that the integrals in lemma 3.3, point (iii) and (v), do not depend on the variable
x1. They immediately follow from the two-dimensional case.

3.4. The case e1 = e2 = e3 = 0

Finally, we shall discuss the case where all the constant terms are zero. Equations (95)–(97)
are satisfied immediately. This means we only need to find conditions on the parameters in
order to satisfy equations (83)–(94).

In the following lemma, we describe our results obtained using an integrating factor
matrix of the form T2.

Lemma 3.4. The vector field (43) with e1 = e2 = e3 = 0 has the following first integrals:

(1) H = α(b1 ln|x2| − b2 ln|x1| − a21x1) + β(b1 ln|x3| − b3 ln|x1| − a31x1), where α, β are
the solutions of equations A22 = 0 and A23 = 0, under the conditions
b1 �= 0, a11 = a12 = a13 = 0 and a22a33 − a32a23 = 0;

(2) H = α(b2/x1 − a21 ln|x1| + a11 ln|x2|) + β(b3/x1 − a31 ln|x1| + a11 ln|x3|), where α, β are
the solutions of equations A22 = 0, A23 = 0, under the conditions
a11 �= 0, b1 = a12 = a13 = 0 and a22a33 − a32a23 = 0;

(3) H = A31 ln|x3| + A11 ln|x2| − A21 ln|x1| + A22x2/x1, where α, β, γ are the solutions of
B1 = 0, A13 = 0 and β + γ = 0, under the conditions
A2

11 + A2
31 �= 0, A22 �= 0, b1 − b2 = a12 − a22 = a13 − a23 = 0 and b1a33 − b3a13 = 0;

(4) H = −(a11 − a21) ln|x3| + (a11 − a31) ln|x2| − (a21 − a31) ln|x1| + (a22 − a32)x2/x1 −
(a13 − a23)x3/x1, under the conditions
(a11 − a31)

2 + (a11 − a21)
2 �= 0, a22 − a32 �= 0, a23 − a33 �= 0 and b1 − b3 = b1 − b2 =

a12 − a22 = a13 − a33 = 0;
(5) H = x

β

1 x
γ

2 , where β, γ are the solutions of B3 = 0, A31 = 0, A32 = 0 and A33 = 0,
under the conditions
(b1, a11, a12, a13)

T = λ(b2, a21, a22, a23)
T for some λ ∈ R;

(6) H = x
β

1 x
γ +α

2 x
β

3 , where α, β, γ are the solutions of B2 = 0, B3 = 0, A2i = 0 and A3i = 0
(i = 1, 2, 3), under the conditions
(b1, a11, a12, a13)

T = λ1(b2, a21, a22, a23)
T and

(b2, a21, a22, a23)
T = λ2(b3, a31, a32, a33)

T for some λ1, λ2 ∈ R;
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(7a) H = x
l1
1 x

l2
2 (A12x2/(l2 + 1) + A33x3), where l1 = −β(−a23 + a33)/A33, l2 = −A13/A33

and α, β, γ are the solutions of B3 = 0, A31 = 0, A32 = 0 and α + β = 0, under the
conditions
A33 �= 0, A13 �= 0, A23 �= 0, A12 �= 0, b2 − b3 = a21 − a31 = 0 and (b1, a11, a12)

T =
λ(b2, a21, a22)

T for some λ ∈ R;
(7b) H = x

l1
1 x

l2
2 (−b3β/l1 + A33x3) where l1 = −a33β/A33, l2 = −(a33γ )/A33 and β, γ are

the solutions of B3 = 0, A31 = 0, A32 = 0, under the conditions
b3 �= 0, a33 �= 0, A33 �= 0, a31 = a32 = 0 and
(b1, a11, a12)

T = λ(b2, a21, a22)
T for some λ ∈ R;

(7c) H = x
l1
1 x

l2
2 ((a21 − a31)x1/(l1 + 1) + (a22 − a32)x2/l2 + (a13 − a23)x3), where l1 =

(a23 − a33)/(a13 − a23), l2 = (a33 − a13)/(a13 − a23), under the conditions
a11 − a31 �= 0, a12 − a32 �= 0, a13 − a33 �= 0, a23 − a33 �= 0, a13 − a23 �= 0,
b1 − b2 = b1 − b3 = 0 and a11 − a21 = a12 − a22 = 0;

(7d) H = x
l1
1 x

l2
2 (−(b2 + b3)/(l1) − (a21 + a31)x1/l2 + (a13 + a23)x3), where l1 = −(a23 +

a33)/(a13 + a23) and l2 = −(a33 − a13)(a13 + a23), under the conditions
a13 + a23 �= 0, b1 + b2 = 0, a11 + a21 = 0, a12 + a22 = 0, a12 − a32 = 0 and
(b1 − b3)a23 − (b2 + b3)a13 = 0;

(8a) H = x
l1
1 x

l2
2 x

l3
3 (b1 + a11x1), where l1 = −(a11B2)/(a11B2 − b1A21), l2 = −(b1α)/(B2),

l3 = (b1β)/(B2) and α, β are the solutions of A22 = 0, A23 = 0, under the conditions
b2

1 + a2
11 �= 0, B2 �= 0, a11B2 − b1A21 �= 0, a12 = a13 = 0 and a22a33 − a32a23 = 0;

(8b) H = x
l1
1 x

l2
2 x

l3
3 (a12x2/l3 − a13x3/l2), where

l1 = (a22 − a32)(a23 − a33)

−a12(a23 − a33) + a13(a22 − a32)
l2 = a12(a23 − a33)

−a12(a23 − a33) + a13(a22 − a32)
,

and l2 + l3 = −1, under the conditions
a13 �= 0, a23 �= 0, a22 −a32 �= 0, a23 −a33 �= 0, b1 = a11 = 0 and b2 −b3 = a21 −a31 = 0;

(8c) H = x
l1
1 x

l2
2 x

l3
3 ((b1 + b2)/(l3) + (a11 + a21)x1/l3 + (a12 + a22)x2/l3 − (a23 + a33)x3/l1),

where

l1 = A22(A21 − A11)

A11A22 − A21A12
l2 = A11(A12 − A22)

A11A22 − A21A12
l3 = A31(A33 − A23)

A31A23 − A21A33
,

where A11A22 −A21A12 �= 0, A31A23 −A21A33 �= 0 and α = β = γ under the conditions
B1A22(A21−A11)+B2A11(A12−A22) = 0, A13A22(A21−A11), +A23A11(A12−A22) = 0,
B3A23(A21−A31)+B2A31(A33−A23) = 0 and A32A23(A21−A31)+A22A31(A33−A23) =
0 with α = β = γ .

Remark that the integral in lemma 3.4, point 5, is the same integral we found in the
two-dimensional LV case.

3.5. On the first integrals of three-dimensional LV systems

We here give some remarks about lemma 3.4, in which we discussed first integrals of three-
dimensional LV systems that have already been extensively discussed in the literature [7, 10,
11, 13–16, 21, 22, 25, 26]. The forms of first integrals obtained in lemma 3.4 (points 1–4)
are similar to the ones obtained by Plank (22) [22], which in fact are special cases [27] of
invariants found in [25]. It is not difficult to show that their integrals are different from the
ones we have obtained in this paper.

The other integrals in lemma 3.4 (points 5–8) have the following general form:

x
λ1
1 x

λ2
2 x

λ3
3 ϕ(x1, x2, x3)

λ4 , (101)
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where λ1, λ2, λ3 and λ4 are some constants and ϕ is a polynomial function of degree 1 in
x1, x2, x3. To the best of our knowledge, the above general form first appeared as a first
integral in [25], except the fact that the first integral in their paper is time dependent. Through
a time rescaling (see [20]) they obtained a time-independent first integral. The existence of
first integrals of this form of three-dimensional LV systems is also extensively investigated by
Cairó [10]. He investigated a polynomial function ϕ of degrees 1 and 2. The integral functions
in points 5–6 have the same form with the ones he found [10, theorem 2(1)]. The forms of
integrals in point 7 do not seem to have been recognized before; thus these new results extend
the known results on the integrals of the form (101). The integral of the form 8a generalizes
integrals obtained in [10, theorem 2(8–13)]. Finally, integrals of the forms 8b and 8c seem to
be new.

4. Conclusion

In this paper, we have derived first integrals for two- and three-dimensional LV systems with
constant terms through an integrating factor matrix. We make Ansätze and obtain conditions
for the existence of first integrals. By our method, the search for integrals in dynamical
systems changes into a linear algebra problem. We note that some conditions of the two- and
three-dimensional LV systems with constant terms to have first integrals do not involve any
constant terms. This is good because under such conditions first integrals are preserved for
any constant terms.

In the two-dimensional case, the integrating factor matrix T (x1, x2) in equation (4), along
with the condition such that T is an integrating factor, turns out to be similar to the one used
by Plank [22] due to S = T −1. In the three-dimensional case this property no longer applies,
as a 3 × 3 skew-symmetric matrix is not invertible. Hence, our analysis generalizes the work
of Plank.

Comparison with the Darboux method. The Darboux method has been applied to find first
integrals of two-dimensional [8, 9] and three-dimensional [10, 26] LV systems. Compared to
this method, our method has advantages in the context of searching for a first integral of LV
systems with constant terms. To apply the Darboux method, one must seek an algebraic curve
of a vector field, and LV systems without constant terms have natural algebraic curves as the
axes are invariant. For systems with constant terms, this no longer applies.

Comparison with the Hamiltonian method. The existence of first integrals of two-dimensional
systems has been obtained using the Hamiltonian method [18–20]. They assumed that the
integrals are products of two or three polynomial functions of degree 1. The advantage of our
method is that we only make a single Ansatz. Gao [15] has also applied a Hamiltonian method
to find first and second integrals of special cases of three-dimensional LV systems, where the
linear terms are absent.

Comparison with the Frobenius method. The Frobenius method was first introduced by
Strelcyn and Wojciechowski [12] to find a first integral for three-dimensional systems. It has
been used to find integrals for LV systems by Grammaticos et al [11]. Unfortunately, they
only look at a special case of the LV system, which is the so-called ABC system.

Comparison with the Carleman embedding method. The existence of first integrals in n-
dimensions has been studied [6, 25] through the Carleman embedding method. However, the
integrals that are obtained are time dependent and are referred to as invariants.
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For future work, it would be a challenging problem to find a more general integrating
factor matrix of a vector field in a dimension greater than or equal to 2. Several first integrals
with the corresponding conditions have been published in the literature and we could use these
results to endeavour to find the general integrating factor matrix.
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[25] Cairó L and Feix M R 1992 Families of invariants of the motion for the Lotka–Volterra equations: the linear
polynomials family J. Math. Phys. 33 2440–55
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